Models of Low-speed Flow for Near-critical Fluids with Gravitational and Capillary Effects

نویسنده

  • R. L. PEGO
چکیده

We study low-speed flows of a highly compressible, single-phase fluid in the presence of gravity, for example, in a regime appropriate for modeling recent spaceshuttle experiments on fluids near the liquid-vapor critical point. In the equations of motion, we include forces due to capillary stresses that arise from a contribution made by strong density gradients to the free energy. We derive formally simplified sets of equations in a low-speed limit analogous to the zero Mach number limit in combustion theory. When viscosity is neglected and gravity is weak, the simplified system includes: a hyperbolic equation for velocity, a parabolic equation for temperature, an elliptic equation related to volume expansion, an integro-differential equation for mean pressure, and an algebraic equation (the equation of state). Solutions are determined by initial values for the mean pressure, the temperature field, and the divergence-free part of the velocity field. To model multi-dimensional flows with strong gravity, we offer an alternative to the anelastic approximation, one which admits stratified fluids in thermodynamic equilibrium, as well as gravity waves but not acoustic waves.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A preconditioned solver for sharp resolution of multiphase flows at all Mach numbers

A preconditioned five-equation two-phase model coupled with an interface sharpening technique is introduced for simulation of a wide range of multiphase flows with both high and low Mach regimes. Harten-Lax-van Leer-Contact (HLLC) Riemann solver is implemented for solving the discretized equations while tangent of hyperbola for interface capturing (THINC) interface sharpening method is applied ...

متن کامل

Effects of Different Turbulence Models in Simulation of Unsteady Tip Leakage Flow in Axial Compressor Rotor Blades Row

Characteristics of rotor blade tip clearance flow in axial compressors can significantly affect their performance and stable operation. It may also increase blade vibrations and cause detrimental noises. Therefore, this paper is contributed to investigate tip leakage flow in a low speed isolated axial compressor rotor blades row. Simulations are carried out on near-stall condition, which is val...

متن کامل

Numerical Predictions of Turbulent Mixed Convection Heat Transfer to Supercritical Fluids Using Various Low Reynolds Number k-e Turbulence Models

There are a number of systems in which supercritical cryogenic fluids are used as coolants or propellant fluids. In some modern military aircraft, the fuel is pressurized above its critical point and used as a coolant to remove heat from the aircraft engine. Accurate prediction of heat transfer coefficients to turbulent flows of supercritical fluids is essential in design of such systems. One o...

متن کامل

Overview of Direct Numerical Simulation of Particle Entrainment in Turbulent Flows

An overview of removal and re-entrainment of particles in turbulent flows is presented. The procedure for the direct numerical simulation (DNS) of the Navier-Stokes equation via a pseudospectral method for simulating the instantaneous fluid velocity field is described. Particle removal mechanisms in turbulent flows in a duct are examined and effects of the near-wall coherent eddies on the parti...

متن کامل

Characterization of Liquid Bridge in Gas/Oil Gravity Drainage in Fractured Reservoirs

Gravity drainage is the main mechanism which controls the oil recovery from fractured reservoirs in both gas-cap drive and gas injection processes. The liquid bridge formed between two adjacent matrix blocks is responsible for capillary continuity phenomenon. The accurate determination of gas-liquid interface profile of liquid bridge is crucial to predict fracture capillary pressure precisely. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016